While David is shaking in his boots about Saturday's matchup of the Cal Bears against Stanford (both teams have a shameful 5-5 record so far), I have been spending time perusing NASA's recent explosion of multimedia offerings. The video that caught my attention comes from a recent paper displaying the transport of CO2 across the globe. That got me thinking...
My illustrious co-bloggers have documented extensive evidence that extreme heat is bad for crops. We also know that rainfed crops do not appreciate a lack of or too much rainfall. How do we know this? The G-Feed crowd likes to use econometric methods to estimate dose response functions between yields/output and temperature/precipitation. In order to attach a causal interpretation to the estimated coefficients of these dose response functions, one needs "exogenous" (read roughly random) sources of variation in temperature and rainfall. While we know that the distribution of crops across climate zones is not random, day to day changes in weather can be interpreted as random, if one controls carefully for other confounders. We first made this point in a PNAS paper in 2006 and this has been standard practice subject to a number of well understood caveats.
So we know: Extreme Heat=Bad. Too much or too little water = Bad.
What we do not understand well so far are the impacts of CO2 on crop yields using non experimental data. There are plenty of studies which pump CO2 into open top chambers of fields and measure differences in yields between carbon fertilized and control plots. What we do not have is a good measure of carbon fertilization in a field setting which incorporates farmer behavior. What has prevented me and arguably many others from attacking this problem empirically is the fact that I thought that CO2 mixed roughly uniformly across space and any variation in CO2 is variation over time. This variation is not useful as one cannot empirically separate the impacts of CO2 from other factors that vary over time, such as prices and business cycles.
The video link above makes me want to question that assumption. The model based patterns here show tremendous spatial and temporal variability within a year. This is the type of variation in temperature and precipitation we use to identify their impacts on yield. While I understand that we do not have a great historical dataset of ground level CO2 measurements, I wonder if an interdisciplinary team of rockstars could come up with a meaningful identification strategy to allow us to measure the impacts of CO2 on yields. Not much good will come from global climate change, but we cannot simply measure the bads and ignore the goods. If anyone has any good ideas, I am interested. I got lots of great suggestions on my climate data post, so here's hoping...
My illustrious co-bloggers have documented extensive evidence that extreme heat is bad for crops. We also know that rainfed crops do not appreciate a lack of or too much rainfall. How do we know this? The G-Feed crowd likes to use econometric methods to estimate dose response functions between yields/output and temperature/precipitation. In order to attach a causal interpretation to the estimated coefficients of these dose response functions, one needs "exogenous" (read roughly random) sources of variation in temperature and rainfall. While we know that the distribution of crops across climate zones is not random, day to day changes in weather can be interpreted as random, if one controls carefully for other confounders. We first made this point in a PNAS paper in 2006 and this has been standard practice subject to a number of well understood caveats.
So we know: Extreme Heat=Bad. Too much or too little water = Bad.
What we do not understand well so far are the impacts of CO2 on crop yields using non experimental data. There are plenty of studies which pump CO2 into open top chambers of fields and measure differences in yields between carbon fertilized and control plots. What we do not have is a good measure of carbon fertilization in a field setting which incorporates farmer behavior. What has prevented me and arguably many others from attacking this problem empirically is the fact that I thought that CO2 mixed roughly uniformly across space and any variation in CO2 is variation over time. This variation is not useful as one cannot empirically separate the impacts of CO2 from other factors that vary over time, such as prices and business cycles.
The video link above makes me want to question that assumption. The model based patterns here show tremendous spatial and temporal variability within a year. This is the type of variation in temperature and precipitation we use to identify their impacts on yield. While I understand that we do not have a great historical dataset of ground level CO2 measurements, I wonder if an interdisciplinary team of rockstars could come up with a meaningful identification strategy to allow us to measure the impacts of CO2 on yields. Not much good will come from global climate change, but we cannot simply measure the bads and ignore the goods. If anyone has any good ideas, I am interested. I got lots of great suggestions on my climate data post, so here's hoping...
No comments:
Post a Comment